• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
vision- moonstyle.info user- moonstyle.info search- moonstyle.info
ФКН
vision- moonstyle.info user- moonstyle.info search- moonstyle.info
Контакты

Крук Евгений Аврамович — и.о. директора, научный руководитель

 

Абрамешин Андрей Евгеньевич — заместитель директора

 

Романов Виктор Владимирович — заместитель директора

 

Костинский Александр Юльевич — заместитель директора

 

Прохорова Вероника Борисовна — заместитель директора

 

Тумковский Сергей Ростиславович — заместитель директора по учебной работе

 

Аксенов Сергей Алексеевич — заместитель директора по научной работе

 

Адрес: Санкт-Петербург, ул. Победы, д.34
Телефон: 8(88)
Факс: 8(88)
Эл. почта: moonstyle.info

     
Образовательные программы
Бакалаврская программа

Инфокоммуникационные технологии и системы связи

4 года
Очная форма обучения
50/10/5
50 бюджетных мест
10 платных мест
5 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Бакалаврская программа

Информатика и вычислительная техника

4 года
Очная форма обучения
100/40/15
100 бюджетных мест
40 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Бакалаврская программа

Информационная безопасность

4 года
Очная форма обучения
30/20
30 бюджетных мест
20 платных мест
RUS
Обучение ведётся на русском языке
Программа специалитета

Компьютерная безопасность

5,5 лет
Очная форма обучения
30/45/1
30 бюджетных мест
45 платных мест
1 платное место для иностранцев
RUS
Обучение ведётся на русском языке
Бакалаврская программа

Прикладная математика

4 года
Очная форма обучения
80/40/6
80 бюджетных мест
40 платных мест
6 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Инжиниринг в электронике

2 года
Очная форма обучения
30/5/2
30 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Интернет вещей и киберфизические системы

2 года
Очная форма обучения
20/5/2
20 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Квантово-информационные технологии

2 года
Очная форма обучения
ENG
Обучение ведётся на английском языке
Магистерская программа

Компьютерные системы и сети

2 года
Очная форма обучения
50/15/2
50 бюджетных мест
15 платных мест
2 платных места для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Математические методы моделирования и компьютерные технологии

2 года
Очная форма обучения
20/5/3
20 бюджетных мест
5 платных мест
3 платных места для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Материалы. Приборы. Нанотехнологии

2 года
Очная форма обучения
20/10/2
20 бюджетных мест
10 платных мест
2 платных места для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Прикладная физика

2 года
Очная форма обучения
RUS
Обучение ведётся на русском языке
Магистерская программа

Системы управления и обработки информации в инженерии

2 года
Очная форма обучения
25/5/2
25 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Суперкомпьютерное моделирование в науке и инженерии

2 года
Очная форма обучения
20/5/4
20 бюджетных мест
5 платных мест
4 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Книга

Большакова Е. И., Воронцов К. В., Ефремова Н. Э. и др.

М.: Moonstyle, 2017.

Статья

Белов А. В., Нежурина М. И., Шестова А. Д.

Научно-техническая информация. Серия 2: Информационные процессы и системы. 2017. № 11. С. 5-9.

Глава в книге

Кузнецов А. С., Ефремов Р. Г.

В кн.: Физико-химические механизмы и регуляция процессов трансформации энергии в биологических структурах. Ижевск: Ижевский институт компьютерных исследований, 2017. Гл. 1.1. С. 9-32.

Студенты Moonstyle разработали программы, которые помогут лечить заболевания иммунной системы

Рудольф Лайко и Софья Толстоухова применили методы глубокого обучения (Deep Learning) к иммунологическим задачам, решение которых может способствовать развитию персонализированной медицины. Результаты своей работы они представили на Международной конференции ISMB/ECCB 2017, где одной из главных тем было применение интеллектуальных систем в молекулярной биологии.

Современная активная иммунотерапия подразумевает введение препаратов, содержащих специальные клетки, стимулирующие работу иммунной системы. Такими методами лечат многие онкологические заболевания и различные иммунодефициты. Но разработка подобных препаратов требует от медиков больших затрат времени и ресурсов и не всегда приводит к успеху, так как невозможно предугадать, сработает ли потенциальное лекарство.

Студенты образовательной программы «Прикладная математика» под руководством аспиранта Moonstyle Вадима Назарова предложили ряд решений, которые позволяют за счет проведения «сухих» компьютерных экспериментов сузить диапазон тестируемых препаратов, что в перспективе значительно облегчит жизнь многим ученым.

Софья Толстоухова, студентка образовательной программы «Прикладная математика» Moonstyle

Как предсказать поведение лимфоцитов

Работа Софьи Толстоуховой заключается в том, чтобы оценить, насколько разные у пациента есть Т-лимфоциты, то есть клетки, непосредственно участвующие в работе иммунной системы — в распознавании чужеродных антигенов наряду с иммуноглобулином. Имея информацию о Т-клеточном разнообразии, потенциально можно говорить о том, с какими заболеваниями иммунная система в состоянии справиться сама, а какие потребуют дополнительного вмешательства в случае их развития.

Софья Толстоухова разработала математическую модель по предсказанию селекции лимфоцитов, а также проект ее программной реализации. Данную модель можно встроить в наборы различных программ для последовательной обработки данных или использовать отдельно. Программа позволяет оценить вероятности уничтожения или выживания отдельных лимфоцитов.

Мы работаем на опережение, так как очевидно, что эта модель несет в себе большой потенциал

«До сих пор никто не решал задачу предсказания наличия или отсутствия, а также количества определенных Т-клеток в крови человека, — рассказывает Софья Толстоухова. — Запроса от медицинского сообщества на модель тимической и клональной селекции пока не было. Мы работаем на опережение, так как очевидно, что эта модель несет в себе большой потенциал. Оценка состояния иммунного репертуара (набора всех Б- или Т-клеток человека), его разнообразия, отслеживание динамики в репертуаре — это то, что могло бы сделать иммунотерапию эффективнее и точнее за счет вычисления недостающих компонентов, то есть, в нашем случае, Т-клеток».

Исследования, проводимые студенткой Вышки, будут интересны ученым, которые ставят эксперименты по применению иммунотерапии в лечении ВИЧ-инфекции, приводящей к вторичному, приобретенному, иммунодефициту. Разработка также поможет при исследовании аутоиммунных заболеваний, когда иммунная система человека начинает воспринимать собственные ткани как чужеродные и повреждать их.

Рудольф Лайко, студент образовательной программы «Прикладная математика» Moonstyle

Как повысить шансы на успешную трансплантацию

Проблема, которую решает Рудольф Лайко, достаточно хорошо известна в медицинском кругу. Она состоит в следующем: главный комплекс гистосовместимости (major histocompatibility complex, MHC) регулирует совместимость тканей и играет ключевую роль в успешности трансплантации органов и тканей. Она возможна только в случае, когда иммунная система будет распознавать новые ткани как свои, а не как чужеродные. Поэтому перед тем как проводить активную иммунотерапию, необходимо ответить на вопрос, какие именно нужны препараты. К примеру, для терапии опухолей необходимо разработать такие препараты, которые атаковали бы только опухоли в контексте MHC реципиента.

Программное обеспечение, позволяющее предсказать силу связи MHC-peptide, уже существует, однако оно обладает существенными недостатками. Так, оно плохо оценивает силу связи комплексов MHC-peptide для тех МНС, которых мало или вообще нет в исходных данных. Математическая модель, созданная Рудольфом Лайко, учитывает данный фактор и позволяет предсказывать для невстреченных МНС силы связывания с высокой точностью. Разработку студента после ряда дополнительных проверок можно применять в реальных условиях.

«Предсказание силы связи MHC-peptide очень важно для разработки препаратов для иммунотерапии, так как Т-клетки и MHC работают в комплексе, и для стимулирования иммунного ответа на патогенные пептиды нужно оценивать не только реакцию Т-клеток, но и реакцию MHC на них, — объясняет Рудольф Лайко. — Зная предсказания для обоих типов молекул, можно оценить диапазон тестируемых препаратов и уже для них запускать «мокрые» биологические эксперименты».

Свои разработки студенты Вышки называют инструментами для других ученых. Они уверены, что спрос на них будет расти с развитием и внедрением в повседневную жизнь технологий персонализированной медицины.

dmi.com.ua

bestseller.reviews

www.diploms-home.com